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Chapter 1 
Basic description of Musical Keyboard 

 
 We built a digital system that outputs a musical note, for ¼ of a second, when a 
key on the keyboard is pressed.  This digital system also has volume control, balance 
control, and a selectable triangular or square wave output. 
 
 The keys Q through I in the first row, A through K in the second row, and Z 
through N in the third row each play a frequency when pressed.  The frequencies are in 
order, with Q being the lowest frequency and N being the highest.   
 
 The volume is controlled by the + and – keys (the shift key does not need to be 
held down for the + key).  When the + key is pressed, the volume on both channels is 
increased by one level, provided the volume is not all the way up.  Likewise, when the – 
key is pressed, the volume on both channels is decreased by one level, provided the 
volume is not all the way down.  The volume of both the left and right channels can be 
viewed on the LEDs on the bread board.  The green LEDs are the left channel volume, 
and the red LEDs are the right channel volume.   
 
 The balance is controlled by the < and > keys (again, the shift key does not need 
to be held down).  When the < key is pressed, the volume on the left channel is increased 
by one level, and the volume on the right channel is decreased by one level.  When the > 
key is pressed, the volume on the right channel is increased by one level, and the volume 
on the left channel is decreased by one level.  These changes can be viewed on the 
volume LEDs.   
 
 To select between the triangular and square wave output, the spacebar is pressed.  
When the musical keyboard is first started, the default output wave is the square wave.  
The lone green LED on the breadboard shows what the current output wave is: if it is lit, 
the output is a triangular wave. If it is not lit, the output is a square wave. 
 
 The reset button on the Xstend board is used to reset the entire circuit. 
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Chapter 2 

Technical description of Musical Keyboard 
 

Data Path 
For the following description of the circuit, refer to the schematic on page 4. 
 
When designing this system, the first thing we had to accomplish was to 

successfully receive the key from the keyboard when a key was pressed.  Keyboards send 
three packets each time a key is pressed: a make code, a break code, and a scan code.  
Each of these packets is 11-bits: 1 start bit, 8 bits of data, 1 odd parity bit, and 1 stop bit.  
Keyboards also have their own clock, which, unlike other clocks, remains high when the 
keyboard is not transmitting data.  This clock pulses for every bit of data that is sent, so 
when a key is pressed, the clock will pulse 33 times.  In order to capture the scan code of 
the key that was pressed, we used an 11-bit shift register, clocked it with the keyboard 
clock, and told it to always shift right.  Thus, when a key is pressed, the shift register will 
shift through 33 bits of data, retaining the last 11 bits, which is the scan code for the key 
that was pressed. 
 
 To let the rest of the circuit know that it is receiving data from the keyboard, we 
created a busy signal.  Basically, this is just a counter and two comparators.  The counter, 
clocked via the keyboard clock, counts up every time the keyboard sends 1 bit of data.  
Since the keyboard sends 33 bits, we compare the output of the counter with 32.  When it 
is equal, the counter should reset.  The output of the counter is also compared with zero.  
When the output is not equal to zero, the keyboard is transmitting data and the busy 
signal is equal to 1. 
 
 Now that we have the key that was pressed stored in the shift register, we need to 
determine what is done next.  In this case, we have a series of comparators to determine 
what key was pressed.  If it was one of the control keys (space, +, -, <, or >) then the 
corresponding comparator sends a status bit to the control unit.  If it was not a control key, 
the scan code is processed by the keyboard to frequency decoder.  This decoder converts 
the scan code into a 24-bit frequency.  The first bit of the output of the decoder is a valid 
bit.  If the key pressed was Q through I, A through K, or Z through N, the decoder tells 
the control unit that it is a valid key and send its corresponding frequency.  Otherwise, the 
decoder tells the control unit that the key was invalid and does not output a frequency.   
 
 The frequency is then sent to two different multiplexors.  The first mux has the 
frequency as one input and 1/32 of the frequency as the second input.  The second mux has 
½ the frequency as one input and 1/64 of the frequency as the second input.  The reason 
this was done is the outputs of those two muxes are used in a clock divider to output a 
slower clock.   
 

The clock divider is just a large counter (24-bits) and two comparators.  The first 
comparator tells the counter to reset when it reaches a certain value, which is the output 
of the first mux.  The second comparator compares the counter to the output of the 
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second mux.  It outputs the slower clock, which is sent to a d flip-flop to remove any 
glitches.   

 
Next we need to generate a square and triangular sound wave.  Before we explain 

how that was accomplished, we need to explain what these waves are.  A square sound 
wave alternates between two values: it’s maximum value and it’s minimum value.  A 
triangular wave moves linearly between it’s maximum and minimum values, with many 
values in between.  The following picture illustrates both of these waves. 

 
 

Figure 1: Triangle and Square Waves 
 
The square wave was easy to produce since it only has two values.  Since the 

stereo codec outputs a 20-bit two’s complement number, a mux was used with a 
maximum value of 218 and a minimum value of -218.  The control for this mux is the slow 
clock, so the output of the mux changes on every clock edge. 

 
The triangular wave was harder to produce.  The way we accomplished it was to 

use a 32 by 1 mux with values ranging from 0, to the peak value (218), back down to 0, 
and then to the minimum value (-218).  This mux is controlled by a 5 bit counter, which 
receives the slow clock.  Every time the counter receives a clock pulse, it counts up by 
one, which changes the output of the mux.  This produces an output with 32 discrete steps 
that resemble a triangular wave. 

 
Both the square and triangular wave outputs go into two 8 by 1 muxes, one for the 

left channel and one for the right channel.  The inputs to these muxes are the normal 
wave, the least significant 18 bits, 16 bits, 14 bits, 12 bits, 11 bits, and 10 bits of the wave, 
and 9 bits of the wave.  They are used for volume control, thus they are controlled by two 
3-bit saturation counters, 1 for each channel.  The saturation counters count up or down 
when the volume is turned up or down, or when the balance is shifted to the left or right.  
They count up as long as they are not at their maximum value (111) and count down as 
long as they are not at their minimum value (000).  This prevents the volume from going 
from it’s maximum level to it’s minimum level by turning it up.  These saturation 
counters also control two 8 by 1 muxes that control the LEDs that display the volume. 
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The outputs of the volume muxes for both the square and triangular wave got into 

two muxes, one for both channels, that select which wave to output.  These two muxes 
are controlled by 1-bit counters, which are controlled by the finite state machine.  
Pressing the space bar switches between the two waves. 

 
The outputs of the wave selection muxes go into yet another mux.  These muxes 

select whether to output the sound or not.  They are controlled by the finite state machine, 
which, when a key is pressed, tells the mux to output the sound for ¼ of a second.  The 
outputs of these muxes go into the stereo codec, which outputs the sound through the 
headphone jack on the Xstend board.   
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Control Unit 
 
 To greatly simplify the control unit for the musical keyboard, we opted to have 
two control units: one for the stereo codec and another for everything else.  The control 
unit for the stereo codec is pretty simple.  Basically, the codec remains in a wait state 
until it is ready to output sound to the left or right channel.  It then goes to the left or right 
state, outputs the sound, and returns to the wait state.  This control unit is pictured below. 
 

 
Figure 3: Codec Control State Diagram  

 
 The other control unit controls everything else: the keyboard input, the square and 
triangular wave selection, volume control, frequency control, and LED control.  Initially, 
this control unit starts in the RST state, which resets all the components.  It then remains 
in a wait state (wait1) until a key is pressed.  Once a key is pressed, it again remains in a 
wait state (wait2) until the key is released.  This is a two-line handshake with the 
keyboard.  Once the key is released, the control unit determines what key was pressed.  If 
the user pressed a key that is not used, the keyboard to frequency decoder will tell the 
control unit that it was not a valid key and it will return to the wait1 state.  If the user 
pressed the spacebar, the control unit goes to the change output state, which changes the 
output between the square and triangular waves by telling the 1-bit counter which 
controls the wave selection mux to count up.  If the user pressed the > key, the control 
unit goes to the inc right dec left state, which increases the volume in the right channel 
and decreases the volume in the left channel by telling the saturation counter that controls 
the right channel to count up and telling the saturation counter that controls the left 
counter to count down.  If the user pressed the < key, the control unit goes to the inc left 
dec right state, which increases the volume in the left channel and decreases the volume 
in the right channel by telling the corresponding saturation counters to count up and down.  
If the user pressed the + key, the control unit goes to the inc volume state, which 
increases the volume in both channels by telling both saturation counters to count up.  If 
the user pressed the – key, the control unit goes to the dec volume state, which decreases 
the volume in both channels by telling both saturation counters to count down.  If the user 
pressed one of the designated frequency keys, the control unit goes to the reset ¼ S count 
state, which resets the ¼ second counter and goes to the output state.  While the ¼ second 
counter has not reach ¼ second yet, the output state continuously outputs the sound.  
Once ¼ second is reached, it stops outputting sound and returns to the wait1 state.  Below 
is a picture of this control unit. 
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 Figure 4: Musical Keyboard FSM State Diagram 
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Chapter 3 

Unique Attributes of Musical Keyboard 
 
 When assigning the different frequencies to keys on the keyboard, we used three 
different octaves.  In each case, the octave contained only the major scale.  A major scale 
consists of eight different notes with the frequency of the lowest note in the octave being 
half of the highest frequency.  Each set of consecutive notes in the major scale consists of 
either a one half step or two half step (full step) difference in frequency.  A step is based 
on the ratio of the higher frequency to the lower frequency.  This ratio for all half steps is 
1.059.  As a result, each half step up is 1.059 times larger than the frequency a half step 
below it.  We chose the first note in the middle octave to be the equivalent of the A above 
the first C on a piano which has a frequency of 440 Hz The frequencies for all of keys in 
our circuit are listed below with values of Hz. 
 

 

full step full step half step full step full step full step half step 

Q W E R T Y U I 
220 250 277 294 330 370 415 440 

        
A S D F G H J K 

440 494 555 588 660 740 831 880 
        

Z X C V B N   
880 988 1109 1175 1319 1480   

 Another unique attribute of our circuit was using LED’s to display the volume 
and balance of the outputs.  Without adding any difficulty to the circuit, it greatly 
increased the appearance and visual appeal of the circuit.  Rather than just giving the 
audio output, it gives a visual representation of what the circuit is doing allowing people 
to see as well as hear what is happening.  The only added requirement of displaying the 
volume in this manner was to include a bread board with an active low LED setup and 
wire each to an unused pin on the XStend board.  The outputs on the pins were simply 
determined by the value of the volume counter which controlled a mux that selected 
different light patterns to show the volume (This is further explained in the previous 
section). 
 
 Lastly, the ability to change between a square or triangle wave output added 
uniqueness to our project.  Using both square and triangle outputs demonstrated how 
different waves can be used to produce relatively similar outputs.  The primary factor in 
producing similar sounds from different waves is assuring that the time between the 
maximum and minimum output levels of the wave are the same for each type of sound 
wave.  As a direct result, the amount of time between each discrete step in a triangle 
wave can be determined.  Because we had 32 (2^5) different steps in each period, we 
were able to use the values for our square wave frequencies and simply shift them left by 
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5 bits and still maintain the same amount of time between the minimum and maximum 
values. 
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Chapter 4 

Afterthoughts 
 
 While implementing the design of our musical keyboard, we encountered a few 
minor problems.  Also, there were aspects of our project that could have been improved.  
The first problem we encountered was with our busy signal.  Occasionally, it would get 
stuck at a logic one and lock our finite state machine in one of the wait states.  We were 
not able to determine what the exact cause of the problem was, but we knew that it had to 
deal with the counter that generated our busy signal.  For some reason, this counter was 
either resetting too soon or not resetting at all sometimes.  This may have been due to 
glitches in the clock signal produced by the keyboard.  One possibility of remedying this 
problem is to debounce this clock signal.  For our purposes, it was easiest to add an extra 
button which could be used to reset the counter when busy got stuck.  This reset was 
wired to the spare button on the XStend board.  In order to reset the counter, the spare 
button had to be held down while a key on the keyboard was pressed.  It is necessary to 
press a key on the keyboard because this specific reset was synchronous and required a 
clock edge and a clock edge is only produced by the keyboard when a key is pressed. 
 
 Another rather impractical aspect of our design was using a 20x32x1 mux to 
generate the triangle wave.  This is obviously not the most efficient way to implement 
this type of wave although it may be the easiest.  It requires a very large amount of gates 
and much of the Xilinx chip’s resources.  Another way to implement this aspect of the 
design would have been to use an adder/subtracter and two comparators with the output 
of the adder/subtracter latched up by a register and fed back into the adder.  Each time the 
clock edge hit, the register would load a new value (the output of the adder/subtracter).  
The value of the register would be continually increased by a discrete step size until it 
reached its maximum value.  At this time, a comparator would tell the adder/subtractor to 
subtract until the minimum value was reach.  At this point, another comparator would 
change the function back to addition.  This could be done by ORing the equal outputs of 
the two comparators together and having them control a 1-bit counter with its output 
controlling the function bit of the adder/subtractor.  The output of the register would be 
sent to the codec interface as the triangle wave signal. 
 
 We encountered another problem when trying to convert from scan codes to 
frequencies.  For some reason, Xilinx would only allow a maximum of 22 conversions 
using our design for the scan code to frequency converter.  We wanted 24 different 
frequencies which we needed to obtain all 3 octaves.  Unfortunately, we were unable to 
determine the cause of this problem and simply left the highest octave incomplete with 6 
different notes instead of 8. 
 
 Another change we could have made is to add minors to our octaves.  Because we 
were limited to the major scale, there were very few songs that could be played on the 
keyboard.  Adding more minors, which involves adding more half steps (explained in 
chapter 3) would have completed each octave.  However, each octave would have 
required 13 different frequencies instead of just 8 which our design used.  This may limit 
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the number of full octaves because we were only able to produce 22 frequencies as I 
explained previously. 
 
 The last improvement to our design could have been to add an exponential wave 
to give an example of one more sound wave and determine any differences in sound that 
it may have produced 
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Appendix A 
Duplicating the Demo 

 
 Included on the CD attached at the end of this document is a working bit file for 
our design.  Along with this, there are a few other things that need set up to create a 
complete working demo.  We found that using the PS/2 port on the XS40 board worked 
better than the PS/2 port on the XStend board.  For some reason, it created fewer 
problems with our busy signal.  However, if the busy signal does still get stuck, the 
procedure explained in chapter 4 can be used to reset it (the busy signal is displayed on 
the bottom bar of the left seven-segment display.  When the bar remains on, the busy 
signal must be reset). 
 
 For this circuit, only the output channel of the stereo codec was needed. 
Obviously, speakers must be hooked to this port to generate the sounds.  However, we 
found that speakers without any amplification could not produce very loud sounds. 
 
 The last step is to set up the LED’s for the volume display.  Each LED is wired in 
an active low configuration using the 5v source on the XStend board and 1.8k resistors.  
The setup for each LED is shown below. 
 

Figure 5: Active Low LED Configuration

 
 
 
 
 
 
 
 
 
 
 
Each LED is wired to a different pin on the XStend board.  However, the numbers beside 
each pin are not the correct numbers.  The actual numbers are on the XS40 board.  The 
corresponding pin is directly across from these numbers.  The pins for the LED’s for the 
left volume, right volume, and square or triangle status are included below. 
 
L1:  pin 10   R1:  pin 84   SquareOrTriangle:  pin 57 
L2:  pin 80   R2:  pin 83 
L3:  pin 81   R3:  pin 82 
L4:  pin 35   R4:  pin 79 
L5:  pin 38   R5:  pin 78 
L6:  pin 39   R6:  pin 5 
L7:  pin 40   R7:  pin 4 
L8:  pin 41   R8:  pin 3 
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